

Team BioSphere

Team Lead

Matthew Nemmer

Recorder

Brandon Warman

Release Manager

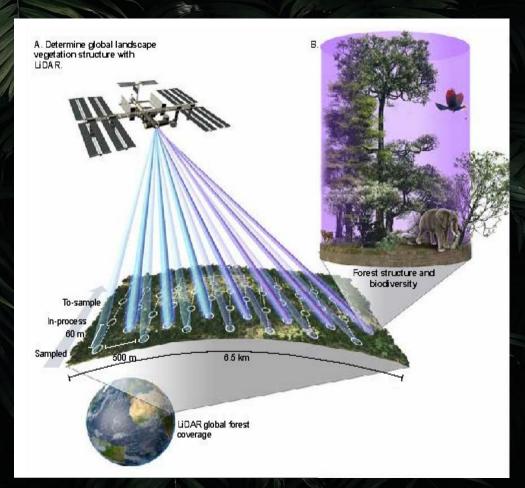
Teng Ao

Architect

Dyanni Bigham

Our Sponsors and Mentor

Dr. Christopher Doughty
Sponsor


Jenna M. Keany Sponsor

Melissa Rose Mentor

Background

- Tropical forests are vital to the global ecosystem
 - Carbon storage
 - Species-rich
- Ecologists use lidar data to locate animals and draw conclusions about forests
- Policy makers use these conclusions to protect forests

Problem Statement

GEDI: Global Ecosystem Dynamics Investigation (Satellite lidar sensor)

- New (2018) lidar system with near-global coverage
- Measures the 3D structure of the Earth
 - Canopy height
 - Surface elevation
 - Canopy vertical structure
- GEDI data is complex, difficult to process, and hard to obtain

Problem Statement

- Ecologists and researchers
 struggle to obtain and view the
 GEDI data they need
- Our clients can process GEDI data for us
- Need for a tool to vizualize the processed data
 - Google Earth Engine exists, but is inadequate

```
latitude, longitude, value, value2

-35.988255322070465,174.44115149809519,1,1

-35.988255322070465,174.44134032560984,2,3

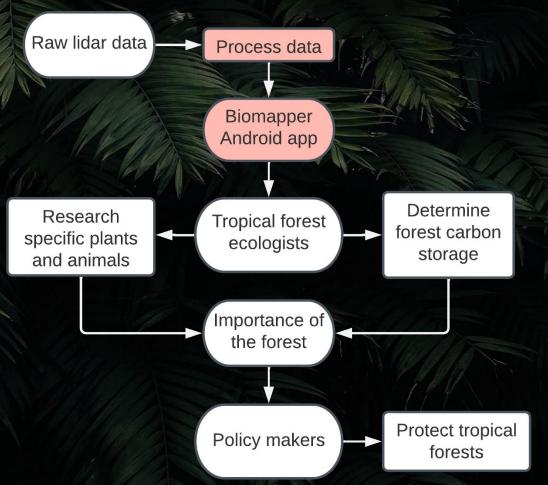
-35.988255322070465,174.44152915312449,3,2

-35.988255322070465,174.44549453093211,4,4

-35.988255322070465,174.44568335844676,5,3

-35.988255322070465,174.44587218596141,6,3

-35.988255322070465,174.44606101347605,7,6


-35.988255322070465,174.4462498409907,8,8
```


Solution Overview

Android application - Biomapper

- Provides ecologists with an easy-to-use tool
- Includes a map for visualizing lidar data
- Gives ecologists access to data wherever they go

Domain-Level Requirements

Display a map that can be navigated

- Scroll and zoom color-coded maps
- Can select one of three data types

Tools for locating areas of interest

- Ability to filter data
- Get data value for a selected point

Offline functionality

• User can specify the region of interest and data types to download

The app will support French and English

• User can switch between them

Default center location

Either the region of interest or the device location

Implementation Overview

Mobile App

Map Data

Retrieval

Amazon EC2

Implementation Overview

Android app responsibilities

- Displaying the data on a map
- Downloading for offline use
- Getting data value for a selected point (when offline)
- Including French and English translations

Server responsibilities

- Storing map data
- API for filtering map data
- API for getting data value for a selected point

Android App Demo

Use case #1 - Finding a region of interest (ROI)

- You are a tropical forest ecologist
 looking for a specific species of bird
- You know the bird lives in trees of medium height (about 25 meters tall)

Android App Demo

Use case #2 - Downloading a ROI

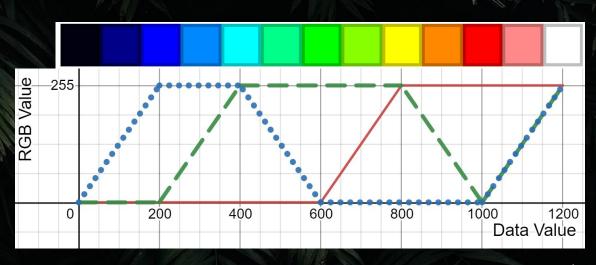
- You have found a region of interest
- Now you want to download that area for a specific set of data types

Android App Demo

Use case #3 - Switching language

- Device is in your native language (English)
- You want to temporarily let another ecologists see the app, but they prefer a different language (French)

Challenges and Resolutions


Tiling datasets is a multi-step process

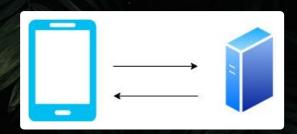
• Looking for a quick and easy process

Accuracy of RGB values to data

- Alternative: second set of raw data
- not cost effective

Testing Plan

Unit Testing

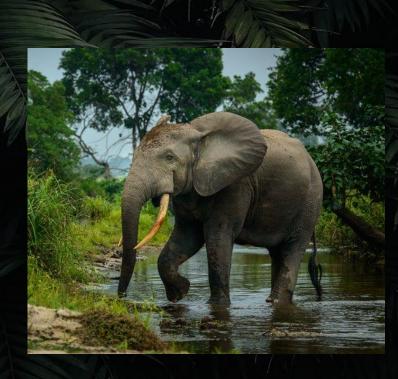

- Jasmine and JS-ImageDiff tool
- JUnit

Integration Testing

 Tested HTTP requests sent from app to server

Usability Testing

- Client is scheduling a meeting with their team
- Questions based on simplilicty, ease of navigation, usefulness



Schedule

April 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26																							
TASK	M M	T	6 W	T	F	S	10 S	M	T	W	14 T	15 F	16 S	17 S	18 M	19 T	20 W	T	F	S S	S S	M	7 T
Server																							
Add full zoom levels																							
Roads and Borders																							
Value-from-point API																							
Refinements																							
Android Application																							
French translation																							
Dynamic scale bar																							
Download size estimate																							
Value-from-point																							
Testing and refinement																							

Conclusion

- Problem: Ecologists and researchers struggle viewing lidar data from GEDI
- Solution: Mobile application with offline functionality and data visualization
- Plan: Finish remaining elements and usability testing

Thank you for your time

We are open to answering questions